The Banach contraction mapping principle and cohomology

نویسنده

  • Ludv́ık Janoš
چکیده

By a dynamical system (X, T ) we mean the action of the semigroup (Z,+) on a metrizable topological space X induced by a continuous selfmap T : X → X. Let M(X) denote the set of all compatible metrics on the space X. Our main objective is to show that a selfmap T of a compact space X is a Banach contraction relative to some d1 ∈ M(X) if and only if there exists some d2 ∈ M(X) which, regarded as a 1-cocycle of the system (X, T )× (X, T ), is a coboundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suzuki-type fixed point theorems for generalized contractive mappings‎ ‎that characterize metric completeness

‎Inspired by the work of Suzuki in‎ ‎[T. Suzuki‎, ‎A generalized Banach contraction principle that characterizes metric completeness‎, Proc‎. ‎Amer‎. ‎Math‎. ‎Soc. ‎136 (2008)‎, ‎1861--1869]‎, ‎we prove a fixed point theorem for contractive mappings‎ ‎that generalizes a theorem of Geraghty in [M.A‎. ‎Geraghty‎, ‎On contractive mappings‎, ‎Proc‎. ‎Amer‎. ‎Math‎. ‎Soc., ‎40 (1973)‎, ‎604--608]‎an...

متن کامل

A Generalisation of Contraction Principle in Metric Spaces

Recommended by G ´ orniewicz Lech Here we introduce a generalisation of the Banach contraction mapping principle. We show that the result extends two existing generalisations of the same principle. We support our result by an example.

متن کامل

The Banach Type Contraction for Mappings on Algebraic Cone Metric Spaces Associated with An Algebraic Distance and Endowed with a Graph

In this work, we define the notion of an algebraic distance in algebraic cone metric spaces defined by Niknam et al. [A. Niknam, S. Shamsi Gamchi and M. Janfada, Some results on TVS-cone normed spaces and algebraic cone metric spaces, Iranian J. Math. Sci. Infor. 9 (1) (2014), 71--80] and introduce some its elementary properties. Then we prove the existence and uniqueness of fixed point for a B...

متن کامل

Fixed Point Theorems via Auxiliary Functions

Fixed point theory is one of fundamental tools of nonlinear functional analysis. Since the fixed point theory has a wide application area in almost all quantitative sciences, many authors have been working on this field. One of the impressive initial results in this direction was given by Banach 1 , known as Banach Contraction Mapping Principle. It states that each contraction in a complete met...

متن کامل

Fixed Point and Common Fixed Point Theorems for Generalized Weak Contraction Mappings of Integral Type in Modular Spaces

where 0 < k < 1. The Banach Contraction Mapping Principle appeared in explicit form in Banach’s thesis in 1922 1 . For its simplicity and usefulness, it has become a very popular tool in solving existence problems in many branches of mathematical analysis. Banach contraction principle has been extended in many different directions; see 2–6 . In 1997Alber andGuerreDelabriere 7 introduced the con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010